Mechanism-based inactivation of human recombinant P450 2C9 by the nonsteroidal anti-inflammatory drug suprofen.
نویسندگان
چکیده
The nonsteroidal anti-inflammatory agent (+ or -)-suprofen [alpha-methyl-4-(2-thienylcarbonyl)benzeneacetic acid] was evaluated as a P450 2C9 inactivator. (+ or -)-Suprofen inactivated the diclofenac-4-hydroxylase activity of baculovirus-expressed P450 2C9 in a time- and concentration-dependent manner, which was consistent with mechanism-based inactivation. The loss of activity followed pseudo-first-order kinetics and was suprofen- and NADPH-dependent. The kinetic parameters for inactivation kinact and KI were 0.091 min-1 and 3.7 microM, respectively, and the partition ratio was 101. Although P450 2C9 substrate S-warfarin partially protected against inactivation, reactive oxygen scavengers such as superoxide dismutase and catalase did not prevent inactivation. Extensive dialysis did not regenerate enzyme activity, suggesting that inactivation proceeded via covalent modification. Inactivated P450 2C9 lost <10% of its ability to form a CO-reduced complex, suggesting that inactivation may have resulted from covalent modification of apoprotein. Addition of exogenous nucleophiles such as glutathione and semicarbazide partially protected against inactivation. Apart from the metabolism of suprofen to 5-hydroxysuprofen, the formation of a suprofen-glutathione conjugate was also discernible in microsomal mixtures containing glutathione. Time of flight mass spectrometry revealed a protonated monoisotopic mass of 566.1304 for this conjugate, consistent with an elemental composition of C24H28N3O9S2. The mass spectrum indicated that conjugation had occurred on the intact thiophene ring, presumably via a thioether linkage. Further evidence for the formation of an electrophilic intermediate in suprofen-P450 2C9 incubations was obtained via the characterization of a novel pyridazine adduct upon addition of semicarbazide to the microsomal mixtures. The pyridazine derivative had a protonated monoisotopic mass of 257.0895 that was consistent with an elemental composition of C14H13O3N2. The formation of the stable pyridazine adduct suggested the generation of an electrophilic gamma-thioketo-alpha, beta-unsaturated aldehyde, analogous to that observed during the cytochrome P450-mediated bioactivation of furan. This electrophilic alpha, beta-unsaturated aldehyde represents a possible reactive intermediate that bioalkylates P450 2C9.
منابع مشابه
Mechanism-based inactivation of cytochrome P450 2C9 by tienilic acid and (+/-)-suprofen: a comparison of kinetics and probe substrate selection.
In vitro experiments were conducted to compare k(inact), K(I) and inactivation efficiency (k(inact)/K(I)) of cytochrome P450 (P450) 2C9 by tienilic acid and (+/-)-suprofen using (S)-flurbiprofen, diclofenac, and (S)-warfarin as reporter substrates. Although the inactivation of P450 2C9 by tienilic acid when (S)-flurbiprofen and diclofenac were used as substrates was similar (efficiency of appro...
متن کاملBioavailability and corneal anti-inflammatory effect of topical suprofen.
The bioavailability in rabbit cornea and aqueous humor of an ophthalmic formulation of suprofen, a nonsteroidal anti-inflammatory drug, was evaluated following topical administration of a single dose to the eye. The drug penetrated rapidly into the uninflamed cornea with intact epithelium; highest levels occurred during the first 30 to 45 min after instillation and decreased thereafter. The bio...
متن کاملNovel metabolic bioactivation mechanism for a series of anti-inflammatory agents (2,5-diaminothiophene derivatives) mediated by cytochrome p450 enzymes.
The thiophene moiety is considered a structural alert in molecular design in drug discovery, largely because several thiophene-containing drugs, including tienilic acid and suprofen, have been withdrawn from the market because of toxicities. Reactive thiophene intermediates, activated via sulfur oxidation or ring epoxidation, are possible culprits for these adverse side effects. In this work, t...
متن کاملComparison of the formation of N-alkylprotoporphyrin IX after interaction of porphyrinogenic xenobiotics with single cDNA-expressed human P450 enzymes in microsomes prepared from baculovirus-infected insect cells and human lymphoblastoid cell lines.
In a previous study using microsomes from human lymphoblastoid cell lines (HLCL) containing single cDNA-expressed human cytochrome P450 (P450) enzymes, human P450 enzymes were identified that are susceptible to mechanism-based inactivation by the porphyrinogenic xenobiotics, 3-[(arylthio)ethyl]sydnone (TTMS), 3,5-diethoxycarbonyl-1,4-dihydro-2,6-dimethyl-4-ethylpyridine (4-ethylDDC) and allylis...
متن کاملcDNA-expressed human cytochrome P450 isozymes. Inactivation by porphyrinogenic xenobiotics.
A number of xenobiotics are known to exert their porphyrinogenic effects in rodents and chick embryos through mechanism-based inactivation of certain cytochrome P450 (P450) isozymes. To facilitate the extrapolation of results from test animals to humans, we have assessed the ability of three prototype porphyrinogenic compounds-namely, 3,5-diethoxycarbonyl-1,4-dihydro-2,6-dimethyl-4-ethylpyridin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 31 11 شماره
صفحات -
تاریخ انتشار 2003